JLCR

Short Research Article

Synthesis of (1- 14 C)butyl, (13 C $_2$ -dimethyl)butyl and (2 H $_6$ -dimethyl)butyl-neotame †

THOMAS WINWICK and ROGER D. BARNES*

Huntingdon Life Sciences Ltd., Woolley Road, Alconbury, Huntingdon, Cambridgeshire PE28 4HS, UK Received 31 August 2006; Revised 14 December 2006; Accepted 14 December 2006

Keywords: neotame; 14C; synthesis

Introduction

Neotame, N-[N-(3,3-dimethylbutyl)-L- α -aspartyl]-L-phenylalanine 1-methyl ester is a high intensity sweetener.

As part of the safety testing programme, neotame was synthesized labelled with 14 C at the 1-position in the dimethylbutyl side chain and with 13 C₂ and separately 2 H₆ in the terminal methyl groups of the same side chain.

$$(CH_3)_3CCH_2CI \xrightarrow{Mg} (CH_3)_3CCH_2MgCI \xrightarrow{*CO_2} (CH_3)_3CCH_2CO_2H$$

$$(CH_3)_3CCH_2CHO \longrightarrow (CH_3)_3CCH_2CH_2OH$$

$$PCC$$

$$NaBH_3CN \longrightarrow H_2N \longrightarrow O$$

$$Ph$$

$$(CH_3)_3CCH_2CH_2HN \longrightarrow O$$

$$(CH_3)_3CCH_2CH_2HN \longrightarrow O$$

$$(CH_3)_3CCH_2CH_2HN \longrightarrow O$$

$$(CH_3)_3CCH_2CH_2HN \longrightarrow O$$

Scheme 1

^{*}Correspondence to: Roger D. Barnes, Huntingdon Life Sciences Ltd., Woolley Road, Alconbury, Huntingdon, Cambridgeshire PE28 4HS, UK. E-mail: barnesr@ukorg.huntingdon.com

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

Scheme 2

Results and discussion

(1-14C)butyl-neotame synthesis

The synthesis of [1-14C]butyl-neotame was initiated by carbonation of 2,2-dimethylpropyl magnesium chloride with [14Clcarbon dioxide to form 3.3-dimethyl-[1-14Clbutyric acid. Reduction of this acid with borane-dimethyl sulphide complex produced the alcohol which was oxidized successfully with pyridinium chlorochromate to the aldehyde. Reductive coupling of the 3,3-dimethyl[1-14C]butyraldevde with aspartame gave the [1-14C]butyl-neotame with a specific activity of 22 mCi/ mmol. The radiochemical purity was >99%. The identity of [1-14C]neotame was confirmed by co-chromatographic and spectrometric comparison with neotame reference standard (Scheme 1).

(13C2-dimethyl)butyl-neotame

Synthesis of the [13C2-dimethyl]butyl-neotame was initiated by reaction of cyclohexylamine with acetaldevde to form ethylidene cyclohexylamine which was reacted with 1,3-13C2acetone to form the labelled dimethylacrylaldehyde. Methylation of this aldehyde by Michael-type addition using dimethyl lithium cuprate gave the labelled dimethylbutyraldehyde which was reductively coupled with aspartame to form $[^{13}C_2$ -dimethyl]butyl-neotame. Estimated isotopic purity was >98 atom % ¹³C. The identity of the product was confirmed by spectrometric comparison with neotame reference standard (Scheme 2).

(2H₆-dimethyl)butyl-neotame synthesis

Synthesis of the [2H₆dimethyl]butyl-neotame was conducted by the same synthetic route except that ethylidene cyclohexylamine was reacted with ²H₆dimethyl-acetone (Scheme 2).